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A highly symmetric four-dimensional quasicrystal 

Veit Elser and N J A Sloane 
AT & T Bell Laboratories. Murray Hill, New Jersey 07974, USA 

ReceiLed 11 May 1987, in final form 13 July 1987 

Abstract. A quasiperiodic pattern (or quasicrystal) is constructed in real four-dimensional 
Euclidean space,  having the non-crystallographic reflection group [ 3 , 3 , 5 ]  of order  14 400 
as its point group. I t  is obtained as  a projection of the eight-dimensional lattice E,, a n d  
has as a cross section a three-dimensional quasicrystal with icosahedral symmetry. 

1. Introduction 

We use a version of de  Bruijn's projection method [l-51 (as developed especially in 
its group-theoretic sense by Kramer and Neri [2]) to construct a quasiperiodic pattern 
(or quasicrystal for short) in four-dimensional Euclidean space, having the reflection 
group GI = [3 ,3 ,  51 as its point group. This group is a non-crystallographic group of 
order 14400, and is the symmetry group of the regular four-dimensional polytope 
known as the 600-cel1, usually denoted by the Schlafli symbol {3,3,5} [6,7]. GI is the 
largest finite real four-dimensional group [8]. The new quasicrystal is obtained as a 
projection of the eight-dimensional lattice E,; it has as a cross section a three- 
dimensional quasicrystal with icosahedral symmetry. 

2. The lattice E8 and the group G ,  = [3,3,51 

Let V be 8~ Euclidean space with an orthonormal basis e , ,  . . . , e,. The lattice E ,  
consists of all points P = I:$= I qe ,  where I;:; I U, is even and either all U ,  E Z or all 
U, E Z + i  [6 ,9 ,10]  ( Z  denotes the integers). The point group Go of this lattice is the 
Weyl group W (  ,E8), of order 696 729 600 = 2" x 3'x 5'x 7. Go has a subgroup isomor- 
phic to G I ;  to make this subgroup visible we give a second definition of E8 using 
quaternions. 

The unit icosians consist of the 120 quaternions obtained from 

( 2 1 ,  o ,o ,  0) l ( * l ,  i l ,  i l ,  2 1 )  ;CO, r l ,  * U ,  i7) 

by allowing any choice of signs and any even permutation of the coordinates, where 
u = $ ( l  -A), I = f ( l  +A), and ( a ,  b, c, d )  is an  abbreviation for the quaternion 
a + bi + cj+ dk. The set 9 of icosians consists of all finite sums of unit icosians [ 10-121. 

A quaternion q = a + bi + cj + dk has quaternionic conjugate cf = a - bi - cj - dk. The 
quaternionic norm of an  icosian q = ( a ,  b, c, d )  is Q( q )  = qcf = a'+ b'+ c z  + d' ,  which 
is a real number of the form x + y& where x, are rational. The Euclidean norm of 
q is N ( q )  = x + y, which can be shown to be a non-negative rational number. The unit 
icosians are precisely the icosians of quaternionic norm unity. The icosians equipped 
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with the quaternionic norm lie in a real 4~ space in which the unit icosians form the 
120 vertices of the regular polytope {3,3,5} [6, 111. However, the icosians equipped 
with the Euclidean norm lie in a real SD space and  form a lattice isomorphic to the 
E8 lattice [lo, 121. We shall use the particular isomorphism between 4 and E8 defined 
by the mappings shown in table 1. There are 240 icosians of Euclidean norm unity, 
consisting of the unit icosians and a times the unit icosians, and these correspond to 
the 240 minimal vectors of the E8 lattice. This correspondence can be deduced from 
table 1 and  is written out in full in table 8.1 of [ lo] and table I of [12]. 

We define the group G, = [ 3 , 3 , 5 ]  t o  consist of all transformations 

9 + rqs and q + r@ q E 4  

of the icosians, where r and s are unit icosians [ l l ] .  These transformations preserve 
Q( q )  and N (  9 ) .  There are 120 choices for each of r and s, but - r ,  -s and r, s produce 
the same transformations, so GI has order 14400. G, is generated by the particular 
transformations [ 10, 121 

L, : q --* iq 

L, : q += wq 

B : q + = g  

R,  : q --* qi 

R, : q += qw 

where w=;(-l,  7, a , O ) ~ 9  (and w 3 = 1 ) .  
The identification of 4 with E8 shows that G, acts on V as a subgroup of Go. 

Each element A E  GI is represented by an  8 x 8  matrix (a t , ) ,  where A ( e , )  =X;=, a,,ej; 
the a,] may be obtained from table 1. Consider L,,  for example. From table 1 we find 
that 

e ,  =:(2-a, -a, -a, -a)  

ie, =:(a, 2-a, a, -CT) 

= ; ( e , +  e4+ e6 - e*)  

which gives the first row of the matrix 

- 0  1 0  1 0  1 0 - 1  
-1 0 1 0 - 1  0 - 1  0 

0 - 1  0 1 0  1 0  1 
-1 0 - 1  0 1 0 - 1  0 

0 1 0 - 1  0 1 0  1 
-1 0 - 1  0 - 1  0 1 0  

0 1 0  1 0 - 1  0 1 
, 1  0 - 1  0 - 1  0 - 1  0 

Table 1. Identification o f  icosians and €$ vectors. 

(1,0,0,0)+ e ,  + e ,  
( O , O ,  1,O) + e , +  e, 
(U, 0 ,  0,O) + + ( - e ,  + ez + e ,  + e ,+  e ,  - eb - e ,  - e 8 )  
( 0 ,  g, O,O)-+t(-e, - e ,  + e3 - e,+ e, + e, - e ,  + e8)  
(o,o, U, O ) + + ( - e ,  - e,  - e 3 +  e 4 + e 5 +  e,+ e , -  e , )  
~ O , O ,  0 , ~ )  + ; ( - e ,  + el - e,  - e4 + e ,  - eh t e ,  + ee)  

( 0 ,  1,0,0)+ e , +  eh 
( O , O , O ,  1) + e ,+  e8 
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There are two 4~ subspaces X and 2 of V that are invariant under the action of 
G I .  The space X is spanned by the vectors fl , f , ,  f3, f4, and 2 by f5, f6, f,, f x ,  where 
f ;  = C y = ,  &,e, and Q, = (&,) is the 8 x 8 orthogonal matrix 

1 c ( Z + a H )  E ( I + T H )  
@ = [  

c ( Z - a H )  E(Z-7H) 

where Z = I,=diag{l, 1, 1, I}, 

-1 -1 -1 -1 

c = (4+ 2cr - l  ' = 0.602. . . H = i [  ; -; 1; Ilj 
-1 

and the tilde denotes the algebraic conjugation operation that changes the sign of 
(i.e. interchanges u and 7) .  Thus C =  ( 4 + 2 ~ ) - '  

If P = 
This changes A = (a,,) E GI to A ' =  WAQ,.  The generators for G, in this basis are 

=0 .372 . .  . . 
To see that X ,  2 are invariant under G I  we represent points of V in the f; basis. 

u,e, = Cp=, u:.f; E V, where U = ( u l ,  . . . , us ) ,  U ' =  (U;, . . . , U;), then U '  = U @ .  

T = [  '1 -1 0 
L:  = diag{ T, T, 7, T }  

LL = diag{ U , ,  fil} 

R :  = diag{ T, - T, T, - T }  

R L = diag{ U,, if2} 
where 

and B ' =  diag{+l, -1, -1, -1, +1, -1, -1, -l}. In this basis the matrices have the form 

where the g' are a 4~ representation of G I ;  this shows that X and 2 are invariant 
subspaces. 

The projection map rX from V to X sends P = X.8=, u,e, E V to Q =I:=, w,e, E X ,  
where 

M' = v n  n=*[,, ;]Q,tr=-,[ 1 a-'z H 

In the f; basis x,, simply sends P = I:= I u : J  to Q =I:= , U% E X .  The projection map 
r,q from V to ,f is described by the matrix n, and sends P =I:=, u:f ;  to Q =E:=, u:f; E 

We note that E8 has only the origin in common with either of the spaces X or 2. 
2. 

3. The Voronoi cell of E8 and its projection onto X 

The Voronoi cell R of E8 is defined by 

R = { Q E V :  1 1  Q i I  S / /  Q - PI/ for all P E  E,}  
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The definition of the new quasicrystal involves the 4~ polytope 9 = 7ra(SZ) obtained 
by projecting SZ onto the subspace 2. 

The Voronoi cell fl is a convex 8~ polytope, described in [8, 10, 131. It has 19 440 
vertices, shown in the ei basis in table 2. (All permutations of the coordinates are 
permitted. The third column indicates when all sign combinations are permitted, or 
if there must be an even or odd number of minus signs.) 

Table 2. Vertices of fl 

Components Signs Number 

(*l ,  0’) all 16 

3T3,  * I  1 odd 1024 
t (F1 ,  i 1 - 1  odd 128 
i (*2 .  +14,03) all 8960 
i ( T 3 3 ,  *l‘) odd 7168 
i ( L 5 ,  i l ’ )  eben 1024 

19 440 

;(*I4, OJ) all 1120 

- 

The polytope 9 is the convex hull of the projection of these vertices onto 2. As 
discussed in 5 2, to project onto 2 we postmultiply these vectors by CD and take the 
last four coordinates. 

From this it can be shown (we omit the details) that P has 720 vertices. There are 
120 vertices with coordinates 

+TZE( r 2 , 0 , 0 , 0 )  + T 2 E ( i l ,  *l ,  * l ,  *1) iT2E(0, *I, * T ,  * U )  

(with all choices of signs and any even permutation of the coordinates) which are 
obtained from the projections of the first three rows of table 2. These are the 120 
vertices of a copy of the polytope {3,3,5}, having edge-length T E  = 0.602 . . . , circum- 
radius Ro = .r2E = 0.973 . . , , inradius R, = 2 - 3 / 2 ~ 4 E  = 0.901 . . ., and in which the distance 
from the centre to the midpoint of a 2D face is R,  = 3 - ” 2 ~ 3 E =  0.909. . . (cf [6] pp 157, 
293). The other 600 vertices arise from the projections of the last,four rows of table 
2 and have coordinates 

fT‘E(*T?,  * 7 - 2 ,  *l ,  0) f7’E(*T2, *T-I, fT-’, f 7 - I )  

f 7 3 E ( * A ,  *7-l ,  * T , O )  

&’E( T2, *2,0,0) 

f T 2 E ( * A ,  *I ,  *l ,  * l )  

fT2E(*2, * l , * T ,  * 7 - l )  

i T ’ E ( r 7 ,  * T ,  *7, & T - ? )  

(again with all choices of signs and any even permutation of the coordinates). These 
are the 600 vertices of a copy of the reciprocal polytope {5,3,3} (the 120-cell), having 
edge-length $ E  = 0.248 . . . , circumradius Ro = 23”3-’~2E = 0.918 . . . , and in which the 
distance from the centre to the midpoint of an edge is R ,  = 3-”’7’E= 0.909.. . (cf [6] 
pp 157, 293). 

Thus W is the convex hull of reciprocal (and concentric) polytopes { 3 , 3 , 5 }  and 
{S, 3,3}, arranged so that the midpoints of the edges of the {5, 3,3} pass through the 
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centres of the triangular ? D  faces of the {3,3,5}. p is a 4~ analogue of the tria- 
contabedron encountered in the investigation of 3~ quasicrystals, the convex hull of 
concentric polyhedra {3,5} (an icosahedron) and {5,3} (a dodecahedron) arranged so 
that the midpoints of their edges coincide [4,5]. 

4. The four-dimensional quasicrystal W 

The 4~ quasicrystal ?Z is obtained by projecting the lattice E8 onto the subspace X ,  
subject to the requirement that the projection onto 2 lies in the polytope Vr: 

% = { T x ( P ) :  P E E , , T 2 ( P ) E Y } .  

Five properties of the quasicrystal are discussed in the rest of this paper. 
(i) % is invariant under a point group (fixing the origin) isomorphic to G, = [3,3,5]. 
To see this we work in thef;  basis. Any element of G, occurs as the top-left corner 

of some matrix 

( Z  8.). 
If U E % there is a vector U E = .ira(fl) such that (U, U )  E &. Then 

However, fl has the same symmetries as E 8 ,  so @ ' E  9, and hence u g ' e  %. 
(i i)  % is closed under multiplication by T. 

Proof: Consider the map from V to V defined by the matrix 

in the e, basis, and by S' = QtrSQ = diag{ T,  T ,  T ,  T ,  a, a, a, a} in the f; basis. This map 
preserves E x ,  S' commutes with the elements g' of GI  in the 4~ representation defined 
in § 2 ,  and S, S' have determinant 1 and satisfy the equation Z 2  - Z - I  = 0. The map 
acts as an  'inflation' on X (increasing lengths) and as a 'contraction' on 2 (decreasing 
lengths). In particular, working in the f; basis, suppose U E %' with ( U ,  U )  E E , .  Then 
the map sends ( U ,  U )  to (TU, a v )  E E x ,  and so TU E %. 

( i i i )  % is a discrete set of points. In fact if t, U are distinct points of %' then 
1 1  f - u / I  2 1/(80~~P') = 0.005 0 4 . .  . . 

Proof: Let t ,  U be the projections of distinct points P, Q E  E,, and let R = P- Q = 
C:,, r,e,, R I  = r X (  R ) ,  R? = n-n( R ) .  Then R # 0 (since P # Q ) ,  and R I  # 0, R 2 #  0 (since 
no point of E, except 0 lies in X or X ) .  We write a = ( r l ,  . . , , r 4 ) ,  p = ( r s , ,  , . , r 8 ) ,  
obtain R I  a s  the left part of (CY,  /3)@, and find 

R I .  RI = c ? { ~ c Y .  a+2/3 '  p + a [ 2 ( ~  - p ) H ( a + p ) " + ( a  - p )  * (CY -p ) ] } .  

R2 . R2 is the algebraic conjugate of R I  . R I .  Using the fact that inner products in E8 
are integers it follows that 

( R ,  * R , ) (  R2 * R,) = c'c''n 

for some positive integer n. Therefore ( R I  . R , ) (  R 2  R,) 3 c2E2 = 1/20. Furthermore, 
. irn(P) and . i r n ( Q ) ~ q ,  so R 2 .  R 2 S  ( 2 ~ l ? ) ~ ,  and the result follows. 
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No lattice has properties ( i )  or ( i i )  and (i)-(i i i)  show that ‘G; is a discrete non-periodic 

(iv) Finding which points are in %. 
I t  is not easy to apply the definition of % directly, since it is hard to tell if a point 

is in 9. We know from 0 3 that 9 contains a sphere of radius 2-1”~“E=0.901 . . . , 
and is contained in a sphere of radius T:? = 0.973 . . . . It follows that 7 r x  (P)  is certainly 
in % if I( 7ra( P) ( 1  < 0.901 . . . , and is certainly not in % if ( 1  7~ e (  P) ( 1  > 0.973 . . . . 

This test is enough to show, for example, that exactly 120 of the 240 minimal vectors 
of E, project into %, producing points c-’ (0, *l ,  *U ,  * T ) ,  etc, forming a copy of (3, 
3, 5 } .  Similarly exactly 120 of the 2160 vectors in E8 of length 2 project into %, 
producing points 7cL1(O, *l ,  *U, *T), etc, forming a slightly larger { 3 , 3 ,  5 }  concentric 
with the first. (Of course we know from property ( i )  that % is highly symmetric when 
viewed from the origin. The neighbourhoods of other points are not so symmetric.) 

There is, however, a simple algorithm for determining precisely which points are 
in %. To decide whether a point P = Z:=, v,e, E E8 projects into %, we first express P 
in terms of the J ;  as P = C : = ,  u i f ; ,  where ( U ; ,  . . . , U;)= ( v l , .  . . , u 8 ) @ .  Let p = 
(U;, . . . , U;). We must test whether p E 9, or equivalently whether there is an a = ( a , ,  
a z ,  a3, a“) such that ( a ,  p )  is in the Voronoi cell Q. It is known [6, 10, 131 that Q is 
the set of points P E  V satisfying 

set of points. 

P * T ‘ ” s  1 ( k  = 1, .  . . ,240) 

where the TIk’ are the 240 minimal vectors of E,. Writing T ‘ k ’ = Z 8  , = I  t l k ’ f ; ,  Y ‘ ~ ’ =  
( t :” ’ ,  . . . , t i k ’ ) ,  8 ‘ k ’  = ( t :“’ ,  . . . , tLk’),  we conclude that a necessary and sufficient condi- 
tion for rX (P) to be in % is that there exists a real vector a = ( a I  , . . , , a4) such that 

a * p< 1 - p .  8 ‘ k ’  for k = 1 , .  . . ,240. 

This is a question of the existence of a ‘feasible solution’ to a system of 240 linear 
inequalities in four variables, a standard (and easy) problem in linear programming. 

(v) % has a cross section which is a 3~ quasicrystal with icosahedral symmetry. 

Proof: We write elements of G I  with respect to thef; basis. The top-left corner matrices 
(the matrices g’ in the notation of § 2)  corresponding to the elements L:RI and LLR: 
are, respectively, 

a =diag{-1, -1, 1, 1) and 

0 +2 

Then a’ = b3 = (a b)5  = I ,  so a,  b generate a subgroup of G I  that is isomorphic to the 
alternating group A S  and fixes the fourth (or f4) coordinate. This 413 representation 
of AS is the sum of 3~ and I D  representations. A cross section of % in which the 
coefficient of f4 is constant therefore has the desired properties. 
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